____, ID __

MTH 221 Linear Algebra Fall 2015, 1–2

Exam I: MTH 221, Fall 2015

Ayman Badawi

QUESTION 1. (i) Given A is a 10×10 matrix such that det(A) = 0. Let B be the second column of A and consider the system of linear equations AX = B. Then

- a. The system has no solutions (inconsistent).
- b. $\{(0, 1, 0, 0)\}$ is the solution set to the system.
- c. The system has infinitely many solutions.
- d. None of the above is correct.

(ii) Let
$$A = \begin{bmatrix} 0 & a & b \\ 0 & -2 & c \\ 0 & 0 & 1 \end{bmatrix}$$
. Then $det(A + 3I_3) = is$
(a) 9 (b) 27 (c) 12 (d) 3

(iii) Let
$$A = \begin{bmatrix} 2 & 4 & -1 & 2 \\ -3 & 7 & 11 & 23 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 0 & 22 \\ -4 & 3 & 15.2 \\ 9 & 0 & 77.5 \\ -7 & 0 & 88 \end{bmatrix}$. Let $D = AB$. Then the second column of D is

(a)
$$\begin{bmatrix} 12\\21 \end{bmatrix}$$
 (b) $\begin{bmatrix} 21\\9\\0 \end{bmatrix}$ (c) $\begin{bmatrix} 0\\21 \end{bmatrix}$ (d) Something else

(iv) Given A is a 4 × 4 matrix and $A \xrightarrow{2R_1 + R_3 \rightarrow R_3} A_1 \xrightarrow{3R_4} \begin{bmatrix} 1 & 3 & 4 & -1 \\ 0 & 3 & 1 & 8 \\ 0 & -3 & 2 & 1 \\ -1 & -3 & -4 & 4 \end{bmatrix}$. Then $det(A^T)$

(a) 9 (b) 27 (c)
$$\frac{1}{9}$$
 (d) 51

(v) Given A is a 2 × 3 matrix and $A \rightarrow 2R_1 + R_2 \rightarrow R_2$ $B \rightarrow 4R_2$ $D = \begin{bmatrix} 1 & 3 & 66 \\ 8 & 12 & 21 \end{bmatrix}$. Let F, W be two elementary matrices such that FWA = D. Then

(a)
$$W = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$$
, $F = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$, (b) $F = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$, $W = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$ (c) $F = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $W = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (d) Something else

(vi) Given A is a 3×3 matrix and $A \xrightarrow{-2R_1 + R_2 \to R_2} B \xrightarrow{4R_2} D = \begin{bmatrix} 1 & 3 & 66 \\ 8 & 12 & 21 \\ 1 & 2 & 62 \end{bmatrix}$. Then $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A =$

(a)
$$\begin{bmatrix} 1 & 3 & 66 \\ 8 & 12 & 21 \\ 1 & 2 & 62 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 3 & 66 \\ 8 & 12 & 21 \\ 0 & -1 & -4 \end{bmatrix}$. (c) D^T (d) Something else

Ayman Badawi

(vii) Given A is nonsingular matrix such that $A^{-1} = \begin{bmatrix} a & -3 & 2 \\ b & 1 & 1 \\ c & 0 & -3 \end{bmatrix}$, for some fixed numbers a, b, c. Consider the

system of linear equations $AX = \begin{bmatrix} 0\\1\\2 \end{bmatrix}$. Then

(b) $\{(1,3,-6)\}$ is the solution set of the system (a) It is possible that the system has no solution.

(c) $\{(a-6, b+2, c)\}$ is the solution set of the system (d) Not enough information in order to determine the solution set, but I am sure that it must have a unique solution.

viii) Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 1 \\ -2 & 0 & 1 \end{bmatrix}$$
. Then $A^{-1} =$
(a) $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & -1 \\ 2 & 0 & -1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$ (c) There is no inverse of A (d) Something else

(ix) Given
$$A = \begin{bmatrix} a & 2 & 0 \\ b & 1 & 4 \\ c & 0 & d \end{bmatrix}$$
 such that $det(A) = -4$ (i.e, A is invertible). Then the (1, 3)-entry of A^{-1} is

(b) $\frac{c}{4}$ (a) $\frac{c}{-4}$ (c) -2 (d) something else

(x) Let
$$A = \begin{bmatrix} 2 & 4 & a \\ 0 & 2 & b \\ 0 & -2 & d \end{bmatrix}$$
 such that $det(A) = 2$. Consider the system $A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix}$. Then the value of x_3

(a) cannot be determined, I need more info. (d) 6 (e) Something else (b)5(c) 10

(xi) Let $A = \begin{bmatrix} 2 & a & b \\ -2 & 4 & 7 \\ 4 & 2a & 10 \end{bmatrix}$. The values of a, b where the system $AX = \begin{bmatrix} \sqrt{7} \\ 2015 \\ 36.23 \end{bmatrix}$ has unique solution are : (a) $a \neq -4$ and $b \neq 5$ (b) $a \neq 0$ and b can be any real number (c) a = 0 and $b \neq 0$ or b = 0 and $a \neq 0$. (d) Something else

(xii) Given A is a 2 × 2 matrix such that $A\begin{bmatrix}3&2\\0&1\end{bmatrix} - 2A = I_2$. Then A =(a) $\begin{bmatrix}1&2\\0&-1\end{bmatrix}$ (b) $\begin{bmatrix}-1&-2\\0&1\end{bmatrix}$ (c) $\frac{1}{3}\begin{bmatrix}1&-2\\0&3\end{bmatrix}$ (d) Something else

(xiii) Given the augmented matrix of a system of linear equations $\begin{bmatrix} 2 & 4 & 2 & 0 & 4 \\ -1 & -2 & -1 & 1 & -1 \\ 3 & 6 & 4 & 0 & 3 \\ & & & & & & & 2 \end{bmatrix}$. The solution set of the

system is

(a)
$$\{(5-2x_2, x_2, -3, 1) \mid x_2 \in R\}$$
 $\{(-1+x_4, 1, -3, x_4) \mid x_4 \in R\}$ $\{(5, 0, -3, 1)\}$ (d) Something else

(xiv) Given the augmented matrix of a system of linear equations $\begin{bmatrix} 1 & -1 & 3 & 4 \\ -1 & 1 & a & 6 \\ -2 & 2 & b & -8 \end{bmatrix}$. The values of *a*, *b* that make the system consistent (i.e, has a solution) (a) $a \neq -3$ and b = -6 (b) a can be any real number, $b \neq -6$ (c) a = -3 and b = -6 (d) Something else.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

(

Name-

MTH 221 Linear Algebra Fall 2015, 1-2

_

Exam II, MTH 221, Fall 2015

Ayman Badawi

QUESTION 1. (i) Let $D = \{(a + b + 2c, 3a - 3b, a + 2b + 3c) | a, b, c \in R\}$. Then dim(D) = a (a) 1 (b) 2 (c) 3 (d) None

(ii) Let A be a 2 × 2 matrix such that A is row-equivalent to $\begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$. Then the eigenvalues of A are :

a) 2, 4 b) $\frac{1}{2}$, $\frac{1}{4}$ c) $\frac{1}{2}$, 4 d) None of the previous

–, ID –

(iii) Which of the following matrices with the given properties are (is) INVERTIBLE and diagnolizable:
a) *A* is 3 × 3, C_A(x) = (x − 3)²(x − 4), E₃ = span{(2, 0, 2), (0, 1, 4)}, and E₄ = span{(0, 0, 9)}
b) *A* is 2 × 2, C_A(x) = (x − 4)² and E₄ = span{(0, 7)}
c) *A* is 2 × 2, C_A(x) = x(x − 2), E₀ = span{(4, 1)}, and E₂ = span{(0, 5)}
d) a and b (e) b and c (f) a and c

(iv) Let
$$A = \begin{bmatrix} 0 & 0 & 1 & 4 \\ 1 & 0 & -1 & -4 \\ 0 & 0 & -3 & -12 \end{bmatrix}$$
. Then $N(A) =$
a) $span\{(0,0,1,4), (1,0,0,0)\}$ b) $span\{(0,2,0,0)\}$ c) $span\{(0,1,0,0), (0,0,-4,1\}\}$ d) None of the previous

(v) Let
$$A = \begin{bmatrix} 0 & 0 & 1 & 4 \\ 1 & 0 & -1 & -4 \\ 0 & 0 & -3 & -12 \end{bmatrix}$$
. Then $col(A)$
a) Span { $(0, 1, 0), (4, -4, -12)$ } b) Span { $(0, 1, 0), (1, 0, 0)$ } c) span{ $(1, -1, -2)$ } d) None of the previous

(vi) Let
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -6 \\ 0 & 1 & -5 \end{bmatrix}$$
. Then the eigenvalues of A are :
a) 0, -5 b) 0, -2, -3 c) 0, -6, -5 d) 1, -5, -6 e)None of the previous

(vii) Let D be a subspace of $R^{2\times 2}$ such that dim(D) = 2. Then a possibility for D is

a)
$$D = \left\{ \begin{bmatrix} a+2b & 2a+4b \\ 0 & 0 \end{bmatrix} \mid a, b \in R \right\}$$
 b) $D = \left\{ \begin{bmatrix} a+3 & 4a \\ b & 6b \end{bmatrix} \mid a, b \in R \right\}$
c) $D = \left\{ \begin{bmatrix} a+2b+c & 3a+6b \\ c & 0 \end{bmatrix} \mid a, b, c \in R \right\}$ d) $D = \left\{ \begin{bmatrix} a+2b & 2a+4b \\ c & a+b \end{bmatrix} \mid a, b, c \in R \right\}$

(viii) Let A be a 2 × 2 matrix such that $A\begin{bmatrix}1\\9\end{bmatrix} = 3\begin{bmatrix}1\\9\end{bmatrix}$ and det(A) = 15. Then Trace(A) = a) 6 b) 8 c) 30 d) 10 e) Need more information.

(ix) Given $D = \{(a, b, c) \in R^3 \mid a + b = 0 \text{ and } a + c = 0, \text{ where } a, b, c \in R\}$ is a subspace of R^3 . Then D = a a) $span\{(1, 0, -1), (1, -1, 0)\}$ b) $span\{(-6, 6, 6)\}$ c) $span\{(0, 1, -1), (1, -1, 0)\}$ d) R^3 e)None of the previous

- (x) One of the following is a basis for P_3 a){ $1 + x^2, -x - x^2, x^2$ } b){ $1 + x + x^2, -1 - x - 2x^2, 1 + x + 5x^2$ } c) { $5, x - 3x^2, 10 + 3x - 9x^2$ } d) {10, x + 3, 16 + 2x} e) None of the previous is correct
- (xi) Given $F = \{f(x) \in P_4 \mid f'(2) = 0\}$ is a subspace of P_4 . Then a basis for F is a) $\{x - 2, x^2 - 4, x^3 - 8\}$. b) $\{x^2 - 4x, x^3 - 12x\}$ c) $\{x^3 + x^2 - 16x, x^3 - 3x^2, x^2 - 4x\}$ d) None of the previous
- (xii) One of the following is true:

a) $\{A \in R^{2 \times 2} \mid det(A^T) = 0\}$ is a subspace of $R^{2 \times 2}$ b) $\{(a, b, c) \in R^3 \mid a, b, c \in R \text{ and } a + b + c - 1 = 0\}$ is a subspace of R^3 c) $\{(a^3, b, a^3) \mid a, b \in R\}$ is a subspace of R^3 d) $\{(a, 3a + b, -b) \mid a, b \ge 0\}$ is a subspace of R^3 .

(xiii) Given that $S = \{A \in R^{2 \times 2} | Trace(A) = 0\}$ is a subspace of $R^{2 \times 2}$. Then dim(S) = a, A = b, 3 = c, 1 = d, 2 = c.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com MTH 221 Linear Algebra Fall 2015, 1–17

				- 11	
Final	exam:	MTH	221,	Fall	2015

Ayman Badawi

FINAL EXAM V2

Name:	
ID:	
Section:	

- Write all steps clearly. Otherwise points might be deducted.
- Mobiles are not allowed in this exam.

Question #	Marks	Maximum Marks
Q1		16
Q2		8
MCQ		54
TOTAL		80

Q1 Let $A = \begin{bmatrix} 6 & 4 & 2 \\ 4 & 6 & 2 \\ 0 & 0 & 2 \end{bmatrix}$. Is A diagnolizable? If yes, then find a diagonal matrix D and an invertible matrix Q such that $D = Q^{-1}AQ$. Do not find Q^{-1} .

 $\fbox{Q2}$ Let $V=span\{(1,0,2),(-1,0,1)\}$. Use Gram-Schmidt process to construct an orthogonal basis for V.

- The **Capital Letter** that corresponds to your answer choice should be clearly written in the middle column.
- Only one answer choice per question will be accepted.

Question #	Your answer	Marks
Q1		4
Q2		4
Q3		4
Q4		4
Q5		4
Q6		4
Q7		4
Q8		4
Q9		4
Q10		4
Q11		4
Q12		4
Q13		4
Q14		4
TOTAL		54

Q2 Let M be a $n \times n$ - matrix such that $det(M) \neq 0$. Which of the following statements is **always true**

- A) M is diagonalizable
- B) M has n distinct eigenvalues
- C) 0 is an eigenvalue of M
- D) It is possible that 0 is an eigenvalue of A^T
- E) All eigenvalues of M are nonzero

Q3 If
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 is such that det $A = 4$, then the determinant
 $\begin{vmatrix} a - 2d & b - 2e & c - 2f \\ \frac{1}{2}g & \frac{1}{2}h & \frac{1}{2}i \\ 2d & 2e & 2f \end{vmatrix}$ is equal to
A) 8
B) 4
C) 2
D) -8

E) -4

Q4 Consider the following subsets of \mathcal{P}_3 :

$$R = \{f(x) \in \mathcal{P}_3 : f'(2) = 0\}, \ S = \{f(x) \in \mathcal{P}_3 : f(1) \ge 0\}$$

and $T = \{f(x) \in \mathcal{P}_3 : f(x) + f'(x) = 0\}.$

Which of these subsets is a subspace of \mathcal{P}_3 ?

A) R, S, and T

B) R and T only

C) T only

D) S only

E) R only

Q5 Recall that a square matrix A is said to be symmetric if $A^t = A$. If \overline{A} is a square matrix, then

- A) AA^t and $A A^t$ are symmetric
- B) $A + A^t$ and $A A^t$ are symmetric
- C) AA^t and $A + A^t$ are symmetric
- D) AA^t , $A + A^t$ and $A A^t$ are symmetric
- E) AA^t , $A + A^t$ and $A A^t$ are not symmetric

Q6 Which of the following sets is a basis for \mathcal{P}_3

- A) $\{1 + x + x^2, 1 + 2x + 2x^2, -2 3x 3x^2\}$ B) $\{1 + x + x^2, x + x^2, 2\}$ C) $\{x + x^2, x + 1, -x^2 + 1\}$
- D) $\{1 + x + x^2, x + x^2, x^2\}$
- E) $\{1, 1 + x + x^2\}$

Q7 If the point $(1, a, b) \in span\{(1, 1, 0), (2, 1, 1), (2, 3, -1)\}$. Then A) a = 0 and b = 2B) a = 1 and b = 1

- C) a = 1 and b = -1
- D) a = 2 and b = 1
- E) a = 2 and b = -1

 $\boxed{Q8} \text{ Let } T : \mathbb{R}^4 \to \mathbb{R}^3,$

$$T(a, b, c, d) = \begin{bmatrix} -3 & 1 & 3 & -2 \\ 1 & 1 & -3 & 4 \\ 1 & 3 & -5 & 8 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

A) dim Range(T) = 2

B) dim Ker(T) = 0

- C) (-3, 3, 5) is not in Range(T)
- D) $Range(T) = \mathbb{R}^3$
- E) $Ker(T) = span\{(0, 1, 1, 0)\}$

Q9 Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation such that $Kert(T) = \{(0, 0, ..., 0)\}$ and $Range(T) = R^m$. Let M be the standard matrix representation of T. then

A) n < m and dim(Row(M)) = n

B) n > m and dim(Col(M)) = m

- C) It is possible that det(M) = 0.
- D) n = m
- E) It is impossible that $M = M^T$

Q10 Let $T : R^2 \to P_2$ be a linear transformation such that T(1, 1) = x and T(-1, 1) = 2. Then T(0, 4) =

- A) 2x + 4
- B) *x* + 4
- C) 2*x* + 2
- D) 4
- E) 4*x* + 8

Q11 The following system of linear equations:

$$\begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ 0 & 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 5 \\ 0 \end{bmatrix}$$

A) has a unique solution

B) has infinitely many solutions

C) has
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 as a solution

D) has no solution

E) has
$$\begin{bmatrix} -5\\0\\0 \end{bmatrix}$$
 as a solution

Q12 Let $T : \mathbb{R}^2 \to \mathbb{P}_2$ be a linear transformation such that T(a, b) = (a + 3b)x + (2a + 6b). Then the fake standard matrix representation of T is

 $\begin{array}{c} A) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ B) \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \\ C) \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\ D) \begin{bmatrix} 3 & 6 \\ 1 & 2 \end{bmatrix} \\ E) \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$

Q13 Let T as above then:

A) $Ker(T) = \{(0,0)\}, Range(T) = span\{x\}$

B) $Ker(T) = \{(0,0)\}, Range(T) = Span\{x+2\}$

C)
$$Ker(T) = span\{(1, -3)\}, Range(T) = Span\{x + 2\}$$

D)
$$Ker(T) = span\{(-3, 1)\}, Range(T) = Span\{x\}$$

E) $Ker(T) = span\{(-6, 2)\}, Range(T) = Span\{x + 2\}$

Q14 Let
$$M = \begin{bmatrix} a^2 & a^3 \\ 1 & a^4 \end{bmatrix}$$
. Which of the following statements is **always true**

A) When *M* is invertible,
$$M^{-1} = \begin{bmatrix} \frac{a}{a^3 - 1} & \frac{1}{a^3 - 1} \\ \frac{-1}{a^3(a^3 - 1)} & \frac{1}{a(a^3 - 1)} \end{bmatrix}$$

B) det M = 0 only if a = 1

C) M is invertible only if $a \neq 0$

D) When *M* is invertible,
$$M^{-1} = \begin{bmatrix} \frac{1}{a(a^3 - 1)} & \frac{-1}{a^3 - 1} \\ \frac{-1}{a^3(a^3 - 1)} & \frac{a}{a^3 - 1} \end{bmatrix}$$

E) M is row equivalent to I_2

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com