Exam I: MTH 221, Fall 2015

Ayman Badawi

QUESTION 1. (i) Given A is a 10×10 matrix such that $\operatorname{det}(A)=0$. Let B be the second column of A and consider the system of linear equations $A X=B$. Then
a. The system has no solutions (inconsistent).
b. $\{(0,1,0,0)\}$ is the solution set to the system.
c. The system has infinitely many solutions.
d. None of the above is correct.
(ii) Let $A=\left[\begin{array}{ccc}0 & a & b \\ 0 & -2 & c \\ 0 & 0 & 1\end{array}\right]$. Then $\operatorname{det}\left(A+3 I_{3}\right)=$ is
(a) 9
(b) 27
(c) 12
(d) 3
(iii) Let $A=\left[\begin{array}{cccc}2 & 4 & -1 & 2 \\ -3 & 7 & 11 & 23\end{array}\right], B=\left[\begin{array}{ccc}3 & 0 & 22 \\ -4 & 3 & 15.2 \\ 9 & 0 & 77.5 \\ -7 & 0 & 88\end{array}\right]$. Let $D=A B$. Then the second column of D is
(a) $\left[\begin{array}{l}12 \\ 21\end{array}\right]$
(b) $\left[\begin{array}{c}21 \\ 9 \\ 0\end{array}\right]$
(c) $\left[\begin{array}{c}0 \\ 21\end{array}\right]$
(d) Something else
(iv) Given A is a 4×4 matrix and $A \overrightarrow{2 R_{1}+R_{3} \rightarrow R_{3}} A_{1} \overrightarrow{3 R_{4}}\left[\begin{array}{cccc}1 & 3 & 4 & -1 \\ 0 & 3 & 1 & 8 \\ 0 & -3 & 2 & 1 \\ -1 & -3 & -4 & 4\end{array}\right]$. Then $\operatorname{det}\left(A^{T}\right)$
(a) 9
(b) 27
(c) $\frac{1}{9}$
(d) 51
(v) Given A is a 2×3 matrix and $A \overrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}} \quad B \quad \overrightarrow{4 R_{2}} \quad D=\left[\begin{array}{ccc}1 & 3 & 66 \\ 8 & 12 & 21\end{array}\right]$. Let F, W be two elementary matrices such that $F W A=D$. Then
(a) $W=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right], \quad F=\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]$,
(b) $F=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right], \quad W=\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]$
(c) $F=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right], \quad W=$ $\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(d) Something else
(vi) Given A is a 3×3 matrix and $A \overrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}} \quad B \quad \overrightarrow{4 R_{2}} \quad D=\left[\begin{array}{ccc}1 & 3 & 66 \\ 8 & 12 & 21 \\ 1 & 2 & 62\end{array}\right]$. Then $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A=$
(a) $\left[\begin{array}{ccc}1 & 3 & 66 \\ 8 & 12 & 21 \\ 1 & 2 & 62\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 3 & 66 \\ 8 & 12 & 21 \\ 0 & -1 & -4\end{array}\right]$.
(c) D^{T}
(d) Something else
(vii) Given A is nonsingular matrix such that $A^{-1}=\left[\begin{array}{ccc}a & -3 & 2 \\ b & 1 & 1 \\ c & 0 & -3\end{array}\right]$, for some fixed numbers a, b, c. Consider the system of linear equations $A X=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$. Then
(a) It is possible that the system has no solution.
(b) $\{(1,3,-6)\}$ is the solution set of the system
(c) $\{(a-6, b+2, c)\}$ is the solution set of the system
(d) Not enough information in order to determine the solution set, but I am sure that it must have a unique solution.
(viii) Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 1 \\ -2 & 0 & 1\end{array}\right]$. Then $A^{-1}=$
(a) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & -1 \\ 2 & 0 & -1\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & -1 \\ 2 & 0 & 1\end{array}\right]$
(c) There is no inverse of A
(d) Something else
(ix) Given $A=\left[\begin{array}{lll}a & 2 & 0 \\ b & 1 & 4 \\ c & 0 & d\end{array}\right]$ such that $\operatorname{det}(A)=-4$ (i.e, A is invertible). Then the (1,3)-entry of A^{-1} is
(a) $\frac{c}{-4}$
(b) $\frac{c}{4}$
(c) -2
(d) something else
(x) Let $A=\left[\begin{array}{ccc}2 & 4 & a \\ 0 & 2 & b \\ 0 & -2 & d\end{array}\right]$ such that $\operatorname{det}(A)=2$. Consider the system $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}4 \\ 2 \\ 3\end{array}\right]$. Then the value of x_{3}
(a) cannot be determined, I need more info.
(b)5
(c) 10
(d) 6
(e) Something else
(xi) Let $A=\left[\begin{array}{ccc}2 & a & b \\ -2 & 4 & 7 \\ 4 & 2 a & 10\end{array}\right]$. The values of a, b where the system $A X=\left[\begin{array}{c}\sqrt{7} \\ 2015 \\ 36.23\end{array}\right]$ has unique solution are :
(a) $a \neq-4$ and $b \neq 5$
(b) $a \neq 0$ and b can be any real number
(c) $a=0$ and $b \neq 0$ or $b=0$ and $a \neq 0$. (d)

Something else
(xii) Given A is a 2×2 matrix such that $A\left[\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right]-2 A=I_{2}$. Then $A=$
(a) $\left[\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right]$
(b) $\left[\begin{array}{cc}-1 & -2 \\ 0 & 1\end{array}\right]$
(c) $\frac{1}{3}\left[\begin{array}{cc}1 & -2 \\ 0 & 3\end{array}\right]$
(d) Something else
(xiii) Given the augmented matrix of a system of linear equations $\left[\begin{array}{ccccc}2 & 4 & 2 & 0 & 4 \\ -1 & -2 & -1 & 1 & -1 \\ 3 & 6 & 4 & 0 & 3 \\ -1 & -2 & -1 & 0 & -2\end{array}\right]$. The solution set of the system is
(a) $\left\{\left(5-2 x_{2}, x_{2},-3,1\right) \mid x_{2} \in R\right\}$
$\left\{\left(-1+x_{4}, 1,-3, x_{4}\right) \mid x_{4} \in R\right\}$
$\{(5,0,-3,1)\}$
(d) Something else
(xiv) Given the augmented matrix of a system of linear equations $\left[\begin{array}{cccc}1 & -1 & 3 & 4 \\ -1 & 1 & a & 6 \\ -2 & 2 & b & -8\end{array}\right]$. The values of a, b that make the system consistent (i.e, has a solution)
(a) $a \neq-3$ and $b=-6$
(b) a can be any real number, $b \neq-6$
(c) $a=-3$ and $b=-6$
(d) Something else.

Faculty information

Exam II , MTH 221, Fall 2015

Ayman Badawi

QUESTION 1. (i) Let $D=\{(a+b+2 c, 3 a-3 b, a+2 b+3 c) \mid a, b, c \in R\}$. Then $\operatorname{dim}(D)=$
a) 1
b) 2
c) 3
d) None
(ii) Let A be a 2×2 matrix such that A is row-equivalent to $\left[\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right]$. Then the eigenvalues of A are :
a) 2, 4
b) $\frac{1}{2}, \frac{1}{4}$
c) $\frac{1}{2}, 4$
d) None of the previous
(iii) Which of the following matrices with the given properties are (is) INVERTIBLE and diagnolizable:
a) A is $3 \times 3, C_{A}(x)=(x-3)^{2}(x-4), E_{3}=\operatorname{span}\{(2,0,2),(0,1,4)\}$, and $E_{4}=\operatorname{span}\{(0,0,9)\}$
b) A is $2 \times 2, C_{A}(x)=(x-4)^{2}$ and $E_{4}=\operatorname{span}\{(0,7)\}$
c) A is $2 \times 2, C_{A}(x)=x(x-2), E_{0}=\operatorname{span}\{(4,1)\}$, and $E_{2}=\operatorname{span}\{(0,5)\}$
d) a and b
(e) b and c
(f) a and c
(iv) Let $A=\left[\begin{array}{cccc}0 & 0 & 1 & 4 \\ 1 & 0 & -1 & -4 \\ 0 & 0 & -3 & -12\end{array}\right]$. Then $N(A)=$
a) $\operatorname{span}\{(0,0,1,4),(1,0,0,0)\}$
b) $\operatorname{span}\{(0,2,0,0)\}$
c) $\operatorname{span}\{(0,1,0,0),(0,0,-4,1\}$
d) None of the previous
(v) Let $A=\left[\begin{array}{cccc}0 & 0 & 1 & 4 \\ 1 & 0 & -1 & -4 \\ 0 & 0 & -3 & -12\end{array}\right]$. Then $\operatorname{col}(A)$
a) $\operatorname{Span}\{(0,1,0),(4,-4,-12)\}$
b) $\operatorname{Span}\{(0,1,0),(1,0,0)\}$
c) $\operatorname{span}\{(1,-1,-2)\}$
d) None of the previous
(vi) Let $A=\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & -6 \\ 0 & 1 & -5\end{array}\right]$. Then the eigenvalues of A are :
a) $0,-5$
b) $0,-2,-3$
c) $0,-6,-5$
d) $1,-5,-6$
e)None of the previous
(vii) Let D be a subspace of $R^{2 \times 2}$ such that $\operatorname{dim}(D)=2$. Then a possibility for D is
a) $D=\left\{\left.\left[\begin{array}{cc}a+2 b & 2 a+4 b \\ 0 & 0\end{array}\right] \right\rvert\, a, b \in R\right\}$
b) $D=\left\{\left.\left[\begin{array}{cc}a+3 & 4 a \\ b & 6 b\end{array}\right] \right\rvert\, a, b \in R\right\}$
c) $D=\left\{\left.\left[\begin{array}{cc}a+2 b+c & 3 a+6 b \\ c & 0\end{array}\right] \right\rvert\, a, b, c \in R\right\} \quad$ d) $D=\left\{\left.\left[\begin{array}{cc}a+2 b & 2 a+4 b \\ c & a+b\end{array}\right] \right\rvert\, a, b, c \in R\right\}$
(viii) Let A be a 2×2 matrix such that $A\left[\begin{array}{l}1 \\ 9\end{array}\right]=3\left[\begin{array}{l}1 \\ 9\end{array}\right]$ and $\operatorname{det}(A)=15$. Then $\operatorname{Trace}(\mathrm{A})=$
a) 6
b) 8
c) 30
d) 10
e) Need more information.
(ix) Given $D=\left\{(a, b, c) \in R^{3} \mid a+b=0\right.$ and $a+c=0$, where $\left.a, b, c \in R\right\}$ is a subspace of R^{3}. Then $D=$
a) $\operatorname{span}\{(1,0,-1),(1,-1,0)\}$
b) $\operatorname{span}\{(-6,6,6)\}$
c) $\operatorname{span}\{(0,1,-1),(1,-1,0)\}$
$\begin{array}{ll}\text { d) } R^{3} & \text { e)None of the }\end{array}$ previous
(x) One of the following is a basis for P_{3}
a) $\left\{1+x^{2},-x-x^{2}, x^{2}\right\}$
b) $\left\{1+x+x^{2},-1-x-2 x^{2}, 1+x+5 x^{2}\right\}$
c) $\left\{5, x-3 x^{2}, 10+3 x-9 x^{2}\right\}$
d)
$\{10, x+3,16+2 x\}$
e) None of the previous is correct
(xi) Given $F=\left\{f(x) \in P_{4} \mid f^{\prime}(2)=0\right\}$ is a subspace of P_{4}. Then a basis for F is
a) $\left\{x-2, x^{2}-4, x^{3}-8\right\}$.
b) $\left\{x^{2}-4 x, x^{3}-12 x\right\}$
c) $\left\{x^{3}+x^{2}-16 x, x^{3}-3 x^{2}, x^{2}-4 x\right\}$
d) None of the previous
(xii) One of the following is true:
a) $\left\{A \in R^{2 \times 2} \mid \operatorname{det}\left(A^{T}\right)=0\right\}$ is a subspace of $R^{2 \times 2} \quad$ b) $\left\{(a, b, c) \in R^{3} \mid a, b, c \in R\right.$ and $\left.a+b+c-1=0\right\}$ is a subspace of R^{3}
c) $\left\{\left(a^{3}, b, a^{3}\right) \mid a, b \in R\right\}$ is a subspace of R^{3}
d) $\{(a, 3 a+b,-b) \mid a, b \geq 0\}$ is a subspace of R^{3}.
(xiii) Given that $S=\left\{A \in R^{2 \times 2} \mid \operatorname{Trace}(A)=0\right\}$ is a subspace of $R^{2 \times 2}$. Then $\operatorname{dim}(S)=$
a) 4
b) 3
c) 1
d) 2

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Final exam: MTH 221, Fall 2015

Ayman Badawi

FINAL EXAM V2

Name:

ID:

Section:

- Write all steps clearly. Otherwise points might be deducted.
- Mobiles are not allowed in this exam.

Question \#	Marks	Maximum Marks
Q1		16
Q2		8
MCQ		54
TOTAL		80

$Q 1$ Let $A=\left[\begin{array}{lll}6 & 4 & 2 \\ 4 & 6 & 2 \\ 0 & 0 & 2\end{array}\right]$. Is A diagnolizable? If yes, then find a diagonal matrix D and an invertible matrix Q such that $D=Q^{-1} A Q$. Do not find Q^{-1}.
$Q 2$ Let $V=\operatorname{span}\{(1,0,2),(-1,0,1)\}$. Use Gram-Schmidt process to construct an orthogonal basis for V.

- The Capital Letter that corresponds to your answer choice should be clearly written in the middle column.
- Only one answer choice per question will be accepted.

Question \#	Your answer	Marks
Q1		4
Q2		4
Q3		4
Q4		4
Q5		4
Q6		4
Q7		4
Q8		4
Q9		4
Q10		4
Q11		4
Q12		4
Q13		4
Q14		4
TOTAL		54

Q1 Let $M=\left[\begin{array}{rrrr}-1 & -2 & 1 & 3 \\ 1 & 0 & 1 & -1 \\ 2 & 1 & 2 & 1\end{array}\right]$. Then the COMPLETE reduced form of of M is
A) $\left[\begin{array}{rrrr}1 & 0 & 1 & -1 \\ 0 & -2 & 2 & 2 \\ 0 & 0 & 1 & 4\end{array}\right]$
В) $\left[\begin{array}{rrrr}1 & 0 & 0 & -5 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 4\end{array}\right]$
C) $\left[\begin{array}{rrrr}1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 4\end{array}\right]$
D) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
E) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$
$Q 2$ Let M be a $n \times n$ - matrix such that $\operatorname{det}(M) \neq 0$. Which of the following statements is always true
A) M is diagonalizable
B) M has n distinct eigenvalues
C) 0 is an eigenvalue of M
D) It is possible that 0 is an eigenvalue of A^{T}
E) All eigenvalues of M are nonzero

Q3 If $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ is such that $\operatorname{det} A=4$, then the determinant $\left|\begin{array}{ccc}a-2 d & b-2 e & c-2 f \\ \frac{1}{2} g & \frac{1}{2} h & \frac{1}{2} i \\ 2 d & 2 e & 2 f\end{array}\right|$ is equal to
A) 8
B) 4
C) 2
D) -8
E) -4

Q4 Consider the following subsets of \mathcal{P}_{3} :

$$
\begin{gathered}
R=\left\{f(x) \in \mathcal{P}_{3}: f^{\prime}(2)=0\right\}, S=\left\{f(x) \in \mathcal{P}_{3}: f(1) \geq 0\right\} \\
\text { and } T=\left\{f(x) \in \mathcal{P}_{3}: f(x)+f^{\prime}(x)=0\right\} .
\end{gathered}
$$

Which of these subsets is a subspace of \mathcal{P}_{3} ?
A) R, S, and T
B) R and T only
C) T only
D) S only
E) R only

Q5 Recall that a square matrix A is said to be symmetric if $A^{t}=A$. If A is a square matrix, then
A) $A A^{t}$ and $A-A^{t}$ are symmetric
B) $A+A^{t}$ and $A-A^{t}$ are symmetric
C) $A A^{t}$ and $A+A^{t}$ are symmetric
D) $A A^{t}, A+A^{t}$ and $A-A^{t}$ are symmetric
E) $A A^{t}, A+A^{t}$ and $A-A^{t}$ are not symmetric

Q6 Which of the following sets is a basis for \mathcal{P}_{3}
A) $\left\{1+x+x^{2}, 1+2 x+2 x^{2},-2-3 x-3 x^{2}\right\}$
B) $\left\{1+x+x^{2}, x+x^{2}, 2\right\}$
C) $\left\{x+x^{2}, x+1,-x^{2}+1\right\}$
D) $\left\{1+x+x^{2}, x+x^{2}, x^{2}\right\}$
E) $\left\{1,1+x+x^{2}\right\}$
$Q 7$ If the point $(1, a, b) \in \operatorname{span}\{(1,1,0),(2,1,1),(2,3,-1)\}$. Then
A) $a=0$ and $b=2$
B) $a=1$ and $b=1$
C) $a=1$ and $b=-1$
D) $a=2$ and $b=1$
E) $a=2$ and $b=-1$
$Q 8$ Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$,

$$
T(a, b, c, d)=\left[\begin{array}{cccc}
-3 & 1 & 3 & -2 \\
1 & 1 & -3 & 4 \\
1 & 3 & -5 & 8
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

A) $\operatorname{dim} \operatorname{Range}(T)=2$
B) $\operatorname{dim} \operatorname{Ker}(T)=0$
C) $(-3,3,5)$ is not in $\operatorname{Range}(T)$
D) $\operatorname{Range}(T)=\mathbb{R}^{3}$
E) $\operatorname{Ker}(T)=\operatorname{span}\{(0,1,1,0)\}$
$Q 9$ Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation such that $\operatorname{Kert}(T)=\{(0,0, \ldots, 0)\}$ and $\operatorname{Range}(T)=R^{m}$. Let M be the standard matrix representation of T. then
A) $n<m$ and $\operatorname{dim}(\operatorname{Row}(M))=n$
B) $n>m$ and $\operatorname{dim}(\operatorname{Col}(M))=m$
C) It is possible that $\operatorname{det}(M)=0$.
D) $n=m$
E) It is impossible that $M=M^{T}$
$Q 10$ Let $T: R^{2} \rightarrow P_{2}$ be a linear transformation such that $T(1,1)=x$ and $T(-1,1)=$ 2. Then $T(0,4)=$
A) $2 x+4$
B) $x+4$
C) $2 x+2$
D) 4
E) $4 x+8$

Q11 The following system of linear equations:

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 0 & 1 \\
0 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
6 \\
5 \\
0
\end{array}\right]
$$

A) has a unique solution
B) has infinitely many solutions
C) has $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ as a solution
D) has no solution
E) has $\left[\begin{array}{c}-5 \\ 0 \\ 0\end{array}\right]$ as a solution
$Q 12$ Let $T: R^{2} \rightarrow \mathbb{P}_{2}$ be a linear transformation such that $T(a, b)=(a+3 b) x+$ $(2 a+6 b)$. Then the fake standard matrix representation of T is
A) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
В) $\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]$
C) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
D) $\left[\begin{array}{ll}3 & 6 \\ 1 & 2\end{array}\right]$
E) $\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$

Q13 Let T as above then:
A) $\operatorname{Ker}(T)=\{(0,0)\}, \operatorname{Range}(T)=\operatorname{span}\{x\}$
B) $\operatorname{Ker}(T)=\{(0,0)\}, \operatorname{Range}(T)=\operatorname{Span}\{x+2\}$
C) $\operatorname{Ker}(T)=\operatorname{span}\{(1,-3)\}, \operatorname{Range}(T)=\operatorname{Span}\{x+2\}$
D) $\operatorname{Ker}(T)=\operatorname{span}\{(-3,1)\}, \operatorname{Range}(T)=\operatorname{Span}\{x\}$
E) $\operatorname{Ker}(T)=\operatorname{span}\{(-6,2)\}, \operatorname{Range}(T)=\operatorname{Span}\{x+2\}$

Q14 Let $M=\left[\begin{array}{cc}a^{2} & a^{3} \\ 1 & a^{4}\end{array}\right]$. Which of the following statements is always true
A) When M is invertible, $M^{-1}=\left[\begin{array}{cc}\frac{a}{a^{3}-1} & \frac{-1}{a^{3}-1} \\ \frac{-1}{a^{3}\left(a^{3}-1\right)} & \frac{1}{a\left(a^{3}-1\right)}\end{array}\right]$
B) $\operatorname{det} M=0$ only if $a=1$
C) M is invertible only if $a \neq 0$
D) When M is invertible, $M^{-1}=\left[\begin{array}{cc}\frac{1}{a\left(a^{3}-1\right)} & \frac{-1}{a^{3}-1} \\ \frac{-1}{a^{3}\left(a^{3}-1\right)} & \frac{a}{a^{3}-1}\end{array}\right]$
E) M is row equivalent to I_{2}

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

